Following the reaction: Computational spectroscopy of the BaZrS₃ perovskite

Prakriti Kayastha, 2nd March 2022

- Why chalcogenide perovskites, why IR spectroscopy?
- Combining theory and experiment to understand synthesis
- DFT workflow and results

Comparisons with other semiconductors

PV wishlist

Brandt et al, MRS Comm. (2015)

Background **Chalcogenide Perovskites**

- Alternative to lead based perovskites which are toxic
- Long term stability compared to other perovskites
- Tunable bandgaps
- Efficient transport properties

- But, show high voltage losses
- Have low defect tolerance

Tiwari et al, J Phys. Energy (2021) Sophia et al, Adv. Optical Mater. (2022)

Background **Chalcogenide Perovskites**

Traditional cubic perovskite structure

- $BaS + ZrS_2 \longrightarrow BaZrS_3$
- Following the reaction to find possible stable structures

Huang et al, Nanotech. (2021)

Orthorhombic chalcogenide perovskite structure

- Why chalcogenide perovskites, why IR spectroscopy?
- Combining theory and experiment to understand synthesis
- DFT workflow and results
- Comparisons with other semiconductors

Ball milling synthesis Wishlist and Process

- Thin film devices
- Low temp synthesis presence of Zr increases temp requirements
- BaS + ZrS₂ \longrightarrow "BaZrS₃" \longrightarrow BaZrS₃"
- Precursor shows signs of perovskite formation (Giulia's preliminary result)
- Use photonic curing for a crystalline film deposition

Faraji et al, Severe Plastic Deformation 2018

Horizontal section

Why an IR spectra is needed?

- Ball milling produces irregular nanoparticles
- Mechanical forces produces crystal defects
- Nanoparticles need to be stabilised by organic chains
- Not suitable for XRD analysis
- IR spectra characterisation irrespective of synthesis method
- IR is fast, needs small sample sizes and can be done in situ \bullet

Potential materials during the reaction Metastable materials

Steele et al, Acc. Chem. Res. (2020) Ishii et al, Mat. Res. Bull. (1993)

ntensity (a.u.)

Raman spectra of Ba_2ZrS_4 (a), $Ba_3Zr_2S_7(b)$ and $BaZrS_3(c)$ at 300K with 647.1nm excitation.

- BaS (*Fm3m*), BaS₂ (C2/c), BaS₃ $(P\overline{4}2_1m)$
- $ZrS_2 (P\overline{3}m1), ZrS$ (P4/nmm), ZrS₃ $(P2_1/m)$, $ZrS(Fm\overline{3}m)$
- BaZrS₃ (Pnma), Ba₃Zr₂S₇ $(P4_2/mnm)$, Ba₃Zr₂S₇ (*I*4/*mmm*), Ba₂ZrS₄ (I4/mmm)

Thermodynamic vs dynamic stability **Global Potential Energy Surface**

Thermodynamic Stability: depth in the PES

Graphite phase more stable than diamond

Zhao et al, Sci. Rep. (2016) Whalley et al, Phys. Rev. B (2016)

Dynamical Stability: curvature of the PES

Orthorhombic MAPI phase is dynamically stable

Thermodynamic Stability Formation energy

•
$$E_F(BaZrS_3) = \frac{E(BaZrS_3) - E(Ba) - E(Zr) - 3E(S)}{5}$$

- Constituents in their elemental form
- Measure in an eV/atom
- Relative energy to the most stable phase

5

Convex hull and Gibbs' triangle From online databases

http://oqmd.org/analysis/phase_diagram/

- Why chalcogenide perovskites, why IR spectroscopy?
- Combining theory and experiment to understand synthesis
- DFT workflow and results

Comparisons with other semiconductors

DFT in a nutshell

Property

Structure (Cubic MAPI)

General DFT workflow

from database Structure optimisation ~ 24 CPU days Stable? (Positive phonons) ~ 19200 CPU days

Band structure analysis ~ 24 CPU days

Convex hull ~ 48 CPU days * number of phases

Experimental structure

Analysis of phonon modes Born effective Dielectric charges tensor ~ 12 CPU days ~ 48 CPU days IR spectra

Dynamic Stability Phonons

- Supercell $2 \times 2 \times 2$
- Found a small soft mode
- Use a larger supercell
 3 × 3 × 2 (also part of literature) to cure the soft mode
- Not too concerning, IR spectra only extracts information at Γ point

F A Alowa, Masters Thesis, 2021

Electronic Structure Bandgap and spin-orbit coupling

- Orthorhombic unit cell, with an initial structure from materials project
- Relaxed with a PBEsol functional with the FHI-aims code
- Lattice constants, bandgaps agree with literature
- Which elements contribute to the VBM and CBM?

Band structure of BaZrS₃

- PBEsol fast for structure optimisation, underestimation of bandgap
- HSE06 not feasible for structure optimisation, good agreement with experimental bandgap of 1.81 eV
- SO splitting of bands in momentum space

Nishigaki et al, RRL Solar (2020)

- Why chalcogenide perovskites, why IR spectroscopy?
- Combining theory and experiment to understand synthesis
- DFT workflow and results

Comparisons with other semiconductors

Band Structure Split-off bands as in traditional semiconductors

Ζ

Electronic Structure DOS: Which bands contribute to VBM and CBM?

- For BaZrS₃
 - Zr d-bands in the CBM
 - S p-bands in the VBM

- In contrast with MAPI where:
 - Pb s-bands + I p-bands in the VBM
 - Pb p-bands in the CBM

Zhu et al, Sci. Rep. (2016)

From HSE06

otal	
Ва	
⁻ I=2	
S I=1	

Next steps

- Parallel work to code FHI-aims interface with Phonopy-Spectroscopy
- Identifying IR/Raman active modes
- Convex hulls and Gibbs' triangle calculations

• Fix small dynamical instability in current calculation (IR modes only from I)

Take home messages

 With DFT, materials can be modelled to give an accurate prediction of observation in the labs

• IR spectra will aid in following the reaction in BaZrS₃ synthesis

DFT predicted energies and structures give more insight into the global PES

Thank you for listening!