Symmetry constrained relaxation in FHI-aims Prakriti Kayastha PhD student at Northumbria University

Imperial College London, 10th June 2022

Personal background Past

- Physics (Hons) degree with a undergraduate thesis on diagonalization of sparse matrices from $\mathcal{O}(N^3)$ to $\mathcal{O}(N)$
- Research assistant for 3 years at TIFR India working with small molecules, quasi-1D materials and 3D materials
- Became fluent in Python but stammered with Fortran90
- Machine learning project based on regression problems and generating databases with high-throughput computation techniques

Personal background Present

- PhD student with Dr Lucy Whalley at Northumbria University
 - CDT for Renewable Energy for Northeast Universities (ReNU)
- Overall PhD is focused on chalcogenide materials for energy generation and storage
- First project is modelling the BaZrS₃ chalcogenide-based perovskite material
 - Thermodynamics of the perovskite and competing phases
 - Verifying synthesis techniques with computed IR and Raman spectra \bullet
- Disorder in Mg-based spinel battery materials MgM₂(S,Se)₄

Talk overview

- Symmetry constrained relaxation: what it is, how it's done and why it's needed
- FHI-aims routines with AFLOW
- systems of interest
- Where symmetry constrained relaxation is invalid

How to save CPU time with geometries in correct symmetries: examples from

Introduction to FHI-aims

- FHI-aims is a numeric atom-centered orbital code in contrast with VASP which is a pseudopotential based code
- It is open-source and adopts more recent software sustainability practices
- It has fantastic documentation
- A very responsive community through their Slack channel and other forums

Geometry relaxation

- monoclinic *P*1 space group
- space group

 As a default, in a <u>geometry in</u> (POSCAR) file, 3N+9 coordinates are relaxation parameters for the optimizer. This is unnecessary, unless the system prefers a

 When one knows the space group of the system, the input can be designed to only include lattice constants and internal parameters of the particular

 Internal parameters are defined through Wyckoff positions of the space group and can be predetermined through the International Tables of Crystallography

AFLOW + FHI-aims

- convince you to try this in your next project
- An interface with AFLOW defines the specific symmetries of the system through parametric equations in the geometry.in file

lattice_vector -2.5292500000000002 2.529250000000002 3.6696000483250000 lattice_vector 2.5292500000000002 -2.529250000000002 3.669600048325000 lattice_vector 2.5292500000000002 2.5292500000000002 -3.6696000483250000 atom_frac 0.8750000000000000 0.5378115899999999 0.1628115900000001 0 atom_frac 0.2878115900000000 0.124999999999999 0.662811589999999 0 atom_frac 0.4621884100000001 0.6249999999999999 0.3371884100000000 0 atom_frac 0.7500000000000000 0.24999999999999999 0.5000000000000000000 Si

Lenz et al., (2019) Npj Comput. Mater 5 123

This method is not very widely used yet, the goal of this presentation is to

	0
)	0
)	0

```
lattice_vector -2.5292500000000002 2.529250000000002 3.6696000483250000
lattice_vector 2.5292500000000002 -2.529250000000002 3.6696000483250000
lattice_vector 2.5292500000000002 2.529250000000002 -3.6696000483250000
atom_frac 0.8750000000000000 0.5378115899999999 0.1628115900000001 0
atom_frac 0.2878115900000000 0.1249999999999999 0.6628115899999999 0
atom_frac 0.4621884100000001 0.6249999999999999 0.3371884100000000 0
atom_frac 0.7500000000000001 0.2499999999999999 0.50000000000000000000 Si
symmetry_n_params 3 2 1
symmetry_params a c x2
symmetry_lv -0.5*a, 0.5*a, 0.5*c
symmetry_lv 0.5*a, -0.5*a, 0.5*c
symmetry_lv 0.5*a, 0.5*a, -0.5*c
symmetry_frac 0.375, 0.125 + x2, 0.25 + x2
symmetry_frac 0.875, 1.125 - x2, 0.75 - x2
symmetry_frac 0.875 - x2, 0.125, 1.25 - x2
symmetry_frac -0.125 + x2, 0.625, -0.25 + x2
symmetry_frac 0, 0, 0
symmetry_frac 0.75, 0.25, 0.5
```

AFLOW + FHI-aims How to make an input <u>geometry.in</u> for SiO₂

Step 1

Si , O ICSD only	All AFLO	X w	Search (60389 entries)	Display
Results per page	Select	page		Found 471 entries
ENTRY 🗘	space group 🗘 🖨	Pearson symbol	\$	DATA
O ₂ Si [009b39705d1c3115]	<i>P</i> 3 ₂ 21 (#154)	hP9		[API, Out, JSON]
O ₂ Si [006068d16ebfef92]	Fddd (#70)	oF96		[API, Out, JSON]
O ₂ Si [012580c76137accc]	<i>C</i> 222 ₁ (#20)	oS24		[API, Out, JSON]
O ₂ Si [01b0704ecadf9ec9]	Pa3 (#205)	cP12		[API, Out, JSON]
O ₂ Si [02d8b57eeb87de27]	<i>P</i> 3 ₂ 21 (#154)	hP9		[API, Out, JSON]
O ₂ Si [02980204caec92e8]	<i>C</i> 222 ₁ (#20)	oS24		[API, Out, JSON]
O ₂ Si [033712fec2d90a1c]	<i>P</i> 3 ₂ 21 (#154)	hP9		[API, Out, JSON]
O ₂ Si [031ff90831bddc49]	/2 ₁ 3 (#199)	cl72		[API, Out, JSON]
O ₂ Si [03186361f1b877d2]	<i>P</i> 4 ₃ 2 ₁ 2 (#96)	tP36		[API, Out, JSON]
O ₂ Si [04fb7862623235b0]	<i>P</i> 3 ₁ 21 (#152)	hP9		[API, Out, JSON]
O ₂ Si [068eeedb53be0875]	<i>Pa</i> 3 (#205)	cP12		[API, Out, JSON]
O ₂ Si [068e3294df46f7b4]	<i>R</i> 3 (#148)	hR72		[API, Out, JSON]
O ₂ Si [088983067b706310]	<i>P</i> 4 ₁ 2 ₁ 2 (#92)	tP12		[API, Out, JSON]
O ₂ Si [0a18c1a34f68e2e2]	<i>P</i> 3 ₁ 21 (#152)	hP9		[API, Out, JSON]
O ₂ Si [0d07d3c41cb5da23]	l42d (#122)	tl12		[API, Out, JSON]
O ₂ Si [0e7071de7a46c90a]	<i>P</i> 6 ₃ / <i>mmc</i> (#194)	hP12		[API, Out, JSON]
O ₂ Si [0ef28cf72e724afe]	P4 ₂ /mnm (#136)	tP6		[API, Out, JSON]

http://aflowlib.org/search/

AFLOW + FHI-aims How to make an input geometry.in for SiO₂

Step 1

Si , O ICSD only		x ow	Search 60389 entries) Display
Results per page	Select	page	Found 471 entries
ENTRY 🗘	space group 🗘	Pearson symbol	¢ DATA
O ₂ Si [009b39705d1c3115]	<i>P</i> 3 ₂ 21 (#154)	hP9	[API, Out, JSON]
O ₂ Si [006068d16ebfef92]	Fddd (#70)	oF96	[API, Out, JSON]
O ₂ Si [012580c76137accc]	<i>C</i> 222 ₁ (#20)	oS24	[API, Out, JSON]
O ₂ Si [01b0704ecadf9ec9]	<i>Pa</i> 3 (#205)	cP12	[API, Out, JSON]
O ₂ Si [02d8b57eeb87de27]	<i>P</i> 3 ₂ 21 (#154)	hP9	[API, Out, JSON]
O ₂ Si [02980204caec92e8]	<i>C</i> 222 ₁ (#20)	oS24	[API, Out, JSON]
O ₂ Si [033712fec2d90a1c]	<i>P</i> 3 ₂ 21 (#154)	hP9	[API, Out, JSON]
O ₂ Si [031ff90831bddc49]	12 ₁ 3 (#199)	cl72	[API, Out, JSON]
O ₂ Si [03186361f1b877d2]	P4 ₃ 2 ₁ 2 (#96)	tP36	[API, Out, JSON]
O ₂ Si [04fb7862623235b0]	<i>P</i> 3 ₁ 21 (#152)	hP9	[API, Out, JSON]
O ₂ Si [068eeedb53be0875]	<i>Pa</i> 3 (#205)	cP12	[API, Out, JSON]
O ₂ Si [068e3294df46f7b4]	<i>R</i> 3 (#148)	hR72	[API, Out, JSON]
O ₂ Si [088983067b706310]	<i>P</i> 4 ₁ 2 ₁ 2 (#92)	tP12	[API, Out, JSON]
O ₂ Si [0a18c1a34f68e2e2]	<i>P</i> 3 ₁ 21 (#152)	hP9	[API, Out, JSON]
O ₂ Si [0d07d3c41cb5da23]	142d (#122)	tl12	[API, Out, JSON]
O ₂ Si [0e7071de7a46c90a]	<i>P</i> 6 ₃ / <i>mmc</i> (#194)	hP12	[API, Out, JSON]
O ₂ Si [0ef28cf72e724afe]	P4 ₂ /mnm (#136)	tP6	[API, Out, JSON]

http://aflowlib.org/search/

Step 2

re Visualization ed Structure	DOWNLOADABLE FILES &		
ructure (as calculated) FLOW Prototype avais Lattice of the Crystal avais Lattice of the Lattice int Group of the Crystal ciprocal Space Lattice	aflowlib.out: [<u>aflowlib.out]</u>	aflowlib.json: [<u>aflowlib.json]</u>	
perlattice odynamic Properties nistry	RELAXED STRUCTURE 🗸		
der charges tic Properties ation Properties ronic Properties ectronic structure tion Details	Relaxed positions (VASP): [VASP-CONTCAR]	Relaxed positions (QE): [<u>QE-GEOMETRY</u>]	Relaxed positions (ABINIT): [<u>ABINIT-GEOMETRY</u>]
nloadable Files try laxed Structure der charges mputational parameters	Relaxed positions (AIMS): [<u>AIMS-GEOMETRY</u>]	Extended crystallographic data for the relaxed structure: [edata.relax.out]	Extended crystallographic data for [edata.bands.out]

AFLOW + FHI-aims How to make an input <u>geometry.in</u> for SiO₂

L	_	<u> </u>	· · · <u> </u>	L	1	-	· _ · ·	· · · · · · ·	· · ·	
aflow_	prototype	label_	orig=A2B_	_tI12_	_122_c	1_a	aflow_	prototype_	_params_	list
aflow_	prototype_	label_	<mark>relax</mark> =A2E	3_tI12	2_122_	_d_b	aflow	_prototype	e_params	s_lis

http://aflowlib.org/search/

Step 3

st_orig=a,c/a,x2 | aflow_prototype_params_values_orig=5.0313,1.440582,0.9138 | Lst_<mark>relax</mark>=a,c/a,x2 | aflow_prototype_params_values_<mark>relax</mark>=5.0585,1.4508649,0.58718841 |

AFLOW + FHI-aims How to make an input <u>geometry.in</u> for SiO₂

aflow_prototype_label_orig=A2B_tI12_122_d_a | aflow_prototype_params_list_orig=a,c/a,x2 | aflow_prototype_params_values_orig=5.0313,1.440582,0.9138 | aflow_prototype_label_relax=A2B_tI12_122_d_b | aflow_prototype_params_list_relax=a,c/a,x2 | aflow_prototype_params_values_relax=5.0585,1.4508649,0.58718841 |

Prakritis-MacBook-Air:~ prakritikayastha\$ aflowpro	to=
aimsadd_equations	
# OSi/A2B_tI12_122_d_a.AB params=5.0585,1.4508649,0.5	871
rt 1), doi: 10.1016/j.commatsci.2018.10.043 (part 2)]	
# AFLOW::AIMS BEGIN	
lattice vector -2.52925000000000 2.5292500000000	
lattice_vector 2.52925000000000 -2.5292500000000	
lattice vector 2.52925000000000 2.5292500000000	_
atom frac 0.3750000000000 0.7121880000000	0.8
atom frac 0.8750000000000 0.53781200000000	0.1
atom frac 0.2878120000000 0.125000000000	0.6
atom frac 0.4621880000000 0.6250000000000	0.3
atom frac 0.0000000000000 0.0000000000000000000	0.0
atom frac 0.7500000000000 0.2500000000000	0.5
<pre># format: symmetry n params [n n lv n fracpos]</pre>	
symmetry n params 3 2 1	
symmetry params a c x2	
symmetry lv -0.5*a , 0.5*a , 0.5*c	
symmetry lv 0.5*a , -0.5*a , 0.5*c	
symmetry lv 0.5*a , 0.5*a , -0.5*c	
symmetry frac 0.375 , x2+0.125 , x2+0.25	
symmetry frac 0.875 , -x2+0.125 , -x2+0.75	
symmetry frac -x2+0.875 , 0.125 , -x2+0.25	
symmetry_frac x2+0.875 , 0.625 , x2+0.75	
symmetry frac 0 , 0 , 0	
symmetry frac 0.75 , 0.25 , 0.5	
# AFLOW::AIMS END	

http://aflowlib.org/search/

Step 3

Step 4

=A2B_tI12_122_d_a:0:Si --params=5.0585,1.4508649,0.58718841

18841 SG=122 [ANRL doi: 10.1016/j.commatsci.2017.01.017 (pa

3.66960004832500 .66960004832500 66960004832500 3718800000000 0 6281200000000 0 6281200000000 0 3718800000000 0 Si 00000000000000000 Si 5000000000000000

AFLOW + FHI-aims (a gotcha!)

- which can cause geometry relaxations to fail
- equivalent sites, but they are not to the FHI-aims solver

Atoms and constraints don't match

atom_frac	0.24447000000000	0.24447000000000	0.0000000000000 Ba	atom_frac	0.24447000000000	0.24447000000000	0.00000000000
atom_frac	0.75553000000000	0.75553000000000	0.00000000000000 Ba	atom_frac	0.75553000000000	0.75553000000000	0.00000000000
atom_frac	0.25553000000000	0.74447000000000	0.5000000000000 Ba	atom_frac	0.25553000000000	0.74447000000000	0.50000000000
atom_frac	0.74447000000000	0.25553000000000	0.5000000000000 Ba	atom_frac	0.74447000000000	0.25553000000000	0.50000000000
symmetry_frac x3 , x3 , 0				symmetry_frac x3 , x3 , 0			
symmetry_fr	cac -x3 , -x3 , 0			symmetry_frac 1-x3 , 1-x3 , 0			
symmetry_frac -x3+0.5 , x3+0.5 , 0.5			symmetry_frac -x3+0.5 , x3+0.5 , 0.5				
symmetry_frac x3+0.5 , -x3+0.5 , 0.5			symmetry_f	rac x3+0.5 , -x3+0	.5 , 0.5		

• In FHI-aims the Wyckoff positions outside the unit cell are not treated as equivalent sites

• For a system with translational symmetry with unit cell 'size' 1, [-x,0,0] and [1-x,0,0] are

Atoms and constraints match

• FHI-aims needs the positions listed in the file and constraints to point to the same atom

Anecdote from a few months ago.. From the FHI-aims Slack channel

Prakriti Kayastha 3:27 PM

Hi Tom, thanks for the new geometry.in file on my question. Perhaps this question is very stupid, my knowledge on Wyckoff sites is not very deep. It seems as though you have replaced the -x, -y, -z variables with 1-x, 1-y, 1-z in some places but in others you have added 1.0 to them as well?

Prakriti Kayastha 3:32 PM Oh wow, that's a big relief but also I'm a little disappointed because I was very close to finishing this code myself

And I just wanted to check what FHI-aims actually needs

3:39 I didn't know you were also working on this, and I realized that if I wrote a wrapper around AFLOW then it would know the initial parameters from the input, which gets around the issues the code was having earlier

Tom Purcell 4:38 PM
No worries, it was not that much time for me. It isalso good for me to have the methodology easy to use so people use it more

Tom Purcell 5:36 PM no worries, it is easier for me

no worries, it is easier for me to spot these errors since I wrote the script

AFLOW + FHI-aims (a gotcha!)

python3 aflow_structure_wrapper.py --proto=A2B_tI12_122_d_a:0:Si --params=5.0585,1.4508649,0.58718841

- AFLOW within it's routine and ensures the atoms are inside the unit cell
- be extensible for every DFT code
- moves forward by asking for what you need

• The wrapper script (now available in the utilities directory of FHI-aims) calls the

• Note: The wrapper script is based on a symmetry module in ASE, so it should

 Side note: It is possible that the crystal prototype you are looking for is not present in the AFLOW database such as Y₂Ti₂O₅S₂. This is how the community

How a single atom affects symmetry of the system Manually adding noise to show it's affect on symmetry

Tetrahedral $I\overline{4}2d$ symmetry

lattice_vector	-2.49455040	2.49455040	3.66755776	lattice_vector	-2.51556912	2.51556912	3.6
lattice_vector	2.49455040	-2.49455040	3.66755776	lattice_vector	2.51556912	-2.51556912	3.6
lattice_vector	2.49455040	2.49455040	-3.66755776	lattice_vector	2.51556912	2.51556912	-3.6
atom_frac	0.37500000	1.02953838	1.15453838 0	atom_frac	0.37500000	1.03312012	1.15812
atom_frac	0.87500000	0.22046162	-0.15453838 0	atom_frac	0.87500000	0.21687988	-0.15812
atom_frac	-0.02953838	0.12500000	0.34546162 0	atom_frac	-0.03312012	0.12500000	0.34187
atom_frac	0.77953838	0.62500000	0.65453838 0	atom_frac	0.78312012	0.62500000	0.65812
atom_frac	0.0000000	0.0000000	0.00000000 Si	atom_frac	0.0000000	0.0000000	0.00000
atom_frac	0.75000000	0.25000000	0.50000000 Si	atom_frac	0.75000000	0.25000000	0.51000

Monoclinic *P*1 symmetry

Reducing relaxation steps (and time) A SiO₂ example

Convergence criteria of 5E-3 eV/A

Constrained relax (14 steps)

grep 'Maxi	mum fo	rce d	compon	ent	is '	outfile	
Maximum	force	compo	onent	is	0.195	5626E+01	eV/A.
Maximum	force	compo	onent	is	0.359	9697E+01	eV/A.
Maximum	force	compo	onent	is	0.616	6373E+01	eV/A.
Maximum	force	compo	onent	is	0.199	9599E+01	eV/A.
Maximum	force	compo	onent	is	0.110	0042E+01	eV/A.
Maximum	force	compo	onent	is	0.188	3100E+00	eV/A.
Maximum	force	compo	onent	is	0.147	7833E+00	eV/A.
Maximum	force	compo	onent	is	0.176	0031E+00	eV/A.
Maximum	force	compo	onent	is	0.876	6995E-01	eV/A.
Maximum	force	compo	onent	is	0.974	4468E-01	eV/A.
Maximum	force	compo	onent	is	0.111	L949E+00	eV/A.
Maximum	force	compo	onent	is	0.943	3848E-01	eV/A.
Maximum	force	compo	onent	is	0.41	5194E-01	eV/A.
Maximum	force	compo	onent	is	0.928	3476E-02	eV/A.
Maximum	force	compo	onent	is	0.105	5587E-02	eV/A.

Full relax (40 steps)

grep 'Maximum force component	is ' outfile
Maximum force component is	0.293440E+01 eV/A.
Maximum force component is	0.321741E+01 eV/A.
Maximum force component is	0.541133E+01 eV/A.
Maximum force component is	0.641221E+01 eV/A.
Maximum force component is	0.113899E+02 eV/A.
Maximum force component is	0.652963E+01 eV/A.
Maximum force component is	0.669594E+01 eV/A.
Maximum force component is	0.360859E+01 eV/A.
Maximum force component is	0.163467E+01 eV/A.
Maximum force component is	0.157145E+01 eV/A.
Maximum force component is	0.123634E+01 eV/A.
Maximum force component is	0.547127E+00 eV/A.
Maximum force component is	0.181153E+01 eV/A.
Maximum force component is	0.886020E+00 eV/A.
Maximum force component is	0.109194E+01 eV/A.
Maximum force component is	0.234305E+01 eV/A.
Maximum force component is	0.497395E+00 eV/A.
Maximum force component is	0.101806E+01 eV/A.
Maximum force component is	0.371355E+00 eV/A.
Maximum force component is	0.738073E+00 eV/A.
Maximum force component is	0.274962E+00 eV/A.
Maximum force component is	0.208805E+00 eV/A.
Maximum force component is	0.125885E+00 eV/A.
Maximum force component is	0.767748E+00 eV/A.
Maximum force component is	0.266856E+00 eV/A.
Maximum force component is	0.348235E+00 eV/A.
Maximum force component is	0.133958E+00 eV/A.
Maximum force component is	0.107640E+00 eV/A.
Maximum force component is	0.176962E+00 eV/A.
Maximum force component is	0.766319E+00 eV/A.
Maximum force component is	0.136109E+00 eV/A.
Maximum force component is	0.120321E+00 eV/A.
Maximum force component is	0.126349E+00 eV/A.
Maximum force component is	0.102609E+00 eV/A.
Maximum force component is	0.652688E-01 eV/A.
Maximum force component is	0.288235E-01 eV/A.
Maximum force component is	0.195064E-01 eV/A.
Maximum force component is	0.148230E-01 eV/A.
Maximum force component is	0.836319E-02 eV/A.
Maximum force component is	0.532/21E-02 eV/A.
Maximum force component is	0.1194/1E-02 eV/A.

Relaxed geometries Constrained relax vs full relax for SiO₂

• Recall: default symmetry constraint in spglib is 1E-5 A

lattice_vector	-2.49455040	2.49455040	3.66755776
lattice_vector	2.49455040	-2.49455040	3.66755776
lattice_vector	2.49455040	2.49455040	-3.66755776
atom_frac	0.37500000	1.02953838	1.15453838 0
atom_frac	0.87500000	0.22046162	-0.15453838 0
atom_frac	-0.02953838	0.12500000	0.34546162 0
atom_frac	0.77953838	0.62500000	0.65453838 0
atom_frac	0.0000000	0.0000000	0.00000000 Si
atom_frac	0.75000000	0.25000000	0.50000000 Si

Constrained relax

- Not every coordinate needs to be treated as a free parameter
- recommended)

Ful	rela	ax

lattice_vector	-2.49217989	2.49639512	3.66875702
lattice_vector	2.49648700	-2.49193006	3.66738771
lattice_vector	2.49226588	2.49225500	-3.67135077
atom_frac	0.37529619	1.02969598	1.15507918 0
atom_frac	0.87550820	0.22077655	-0.15407198 0
atom_frac	-0.02939474	0.12513916	0.34567591 0
atom_frac	0.77980559	0.62521446	0.65481740 0
atom_frac	0.00030066	0.00020939	0.00038296 Si
atom_frac	0.75028585	0.25019365	0.50035111 Si

Often one has to loosen this constraint to obtain the correct space group (not

Loss of symmetry affecting the phonon BS

Full relax

- Example from my research: 2x2x2 supercell calculation on BaZrS₃ perovskite
- Full relax creates unnecessary soft phonon modes which do not appear with constrained relaxation

Constrained relax

Symmetry and no. of lattice displacements

• A system with N atoms has to be evaluated at 6N displacement during phonon calculations

		E	xam	ple: [Diam	ond Si (2
$\begin{pmatrix} \Phi_{11}^{xx} \\ \Phi_{11}^{yx} \\ \Phi_{11}^{zx} \\ \Phi_{21}^{xx} \\ \Phi_{21}^{yx} \\ \Phi_{21}^{zx} \\ \Phi_{21}^{zx} \end{pmatrix}$	$ \begin{array}{c} \Phi_{11}^{xy} \\ \Phi_{11}^{yy} \\ \Phi_{11}^{zy} \\ \Phi_{21}^{xy} \\ \Phi_{21}^{yy} \\ \Phi_{21}^{zy} \\ \Phi_{21}^{zy} \end{array} $	$\begin{array}{c} \Phi_{11}^{xz} \\ \Phi_{11}^{yz} \\ \Phi_{11}^{zz} \\ \Phi_{21}^{xz} \\ \Phi_{21}^{yz} \\ \Phi_{21}^{zz} \\ \Phi_{21}^{zz} \end{array}$	$\begin{array}{c} \Phi_{12}^{xx} \\ \Phi_{12}^{yx} \\ \Phi_{12}^{zx} \\ \Phi_{12}^{zx} \\ \Phi_{22}^{xx} \\ \Phi_{22}^{yx} \\ \Phi_{22}^{yx} \\ \Phi_{22}^{zx} \end{array}$	$\begin{array}{c} \Phi_{12}^{xy} \\ \Phi_{12}^{yy} \\ \Phi_{12}^{zy} \\ \Phi_{12}^{zy} \\ \Phi_{22}^{xy} \\ \Phi_{22}^{yy} \\ \Phi_{22}^{zy} \\ \Phi_{22}^{zy} \end{array}$	$ \begin{array}{c} \Phi_{12}^{xz} \\ \Phi_{12}^{yz} \\ \Phi_{12}^{zz} \\ \Phi_{12}^{zz} \\ \Phi_{22}^{xz} \\ \Phi_{22}^{yz} \\ \Phi_{22}^{yz} \\ \Phi_{22}^{zz} \end{array} \right) $	\Rightarrow

atoms in the basis):

Hessian has 36 entries: 6 displacements **d** required

Symmetry and no. of lattice displacements

A system with N atoms has to be evaluated at 6N displacement during phonon calculations

- displacement is needed

https://fhi-aims-club.gitlab.io/tutorials/phonons-with-fhi-vibes/ FHI-aims lecture delivered by Christian Carbogno

Matrix elements of the Hessian are equivalent due to symmetry and only 1

• If incorrect symmetries are provided, unnecessary displacements are created

No. of displacements for finite difference calculations This is determined by:

- Number of atoms in the unit cell
- Space group symmetry
- Number of inequivalent species of atoms

Comparing no. of displacements for materials

Same atom types, but different number of atoms in the unit cell

Symmetry constrained
 Full relax

AgBiS₂ in $R\overline{3}m$ has 4 atoms AgBiS₂ in $P\overline{3}m1$ has 12 atoms

Comparing no. of displacements for materials

 Same atom types, same number of space groups

• Same atom types, same number of atoms and Bravais lattices, but different

Symmetry constrained
 Full relax

CZTS in $I\overline{4}$

CZTS in $I\overline{4}2m$

Comparing number of displacements for materials

atom sites

Material (Space group)

Same space group and same number of atoms in unit cell, but inequivalent

Symmetry constrained Full relax

Atom (Wyckoff position)

- BaZrS₃ Sb₂Se₃
- Ba (4c) Sb (4c)
- Zr (4a) Sb (4c)
- S Se (4c) (4c)
- S (8d) Se (4c)
- S (8d) Se (4c)

Comparing number of displacements for materials More examples from popular materials

How it affects displacements with Phono3py

• Example from my research from the BaZrS₃ perovskite: 14k vs 115k displacements! Massive save on CPU time

	Symmetry constrained Full relax	
na)		
e group)		
26		

Where symmetry constrained relaxation is incompatible

- For some systems, the symmetry should be lowered during relaxation
 - Defect systems with charge localisation
 - Magnetic systems with spin-lattice coupling

Mosquera-Lois et al., (2021) Matter 4 2602; Akamatsu et al., (2013) Adv. Funct. Mater. 23 1864

Where symmetry constrained relaxation is incompatible

- Surfaces reconstruction mechanisms and catalysis (this should be easy to implement externally)
- Clusters only particular modes are important in understanding the underlying chemistry
- Molecules In Gaussian, the code identifies the point group of the system (within a threshold) and one can choose only to relax relevant coordinates

Take home messages

- Proper symmetry assignment during geometry relaxation can ensure the material remains in the correct space group
- The right symmetry ensures no undesirable imaginary appear in the phonon BS
- Save CPU time:
 - Reduce the number of displacement steps compared to 6N steps in harmonic Phonopy calculations
 - The difference in number of steps is even more pronounced for steps created for Phono3py calculations
- Symmetry constrained relaxation does not apply for all material science problems!

Thank you for listening!

Email: prakriti.kayastha@northumbria.ac.uk GitHub: prakayastha Twitter: <u>@prakayastha314</u>